Hybrid Models Identified a 12-Gene Signature for Lung Cancer Prognosis and Chemoresponse Prediction

نویسندگان

  • Ying-Wooi Wan
  • Ebrahim Sabbagh
  • Rebecca Raese
  • Yong Qian
  • Dajie Luo
  • James Denvir
  • Val Vallyathan
  • Vincent Castranova
  • Nancy Lan Guo
چکیده

BACKGROUND Lung cancer remains the leading cause of cancer-related deaths worldwide. The recurrence rate ranges from 35-50% among early stage non-small cell lung cancer patients. To date, there is no fully-validated and clinically applied prognostic gene signature for personalized treatment. METHODOLOGY/PRINCIPAL FINDINGS From genome-wide mRNA expression profiles generated on 256 lung adenocarcinoma patients, a 12-gene signature was identified using combinatorial gene selection methods, and a risk score algorithm was developed with Naïve Bayes. The 12-gene model generates significant patient stratification in the training cohort HLM & UM (n = 256; log-rank P = 6.96e-7) and two independent validation sets, MSK (n = 104; log-rank P = 9.88e-4) and DFCI (n = 82; log-rank P = 2.57e-4), using Kaplan-Meier analyses. This gene signature also stratifies stage I and IB lung adenocarcinoma patients into two distinct survival groups (log-rank P<0.04). The 12-gene risk score is more significant (hazard ratio = 4.19, 95% CI: [2.08, 8.46]) than other commonly used clinical factors except tumor stage (III vs. I) in multivariate Cox analyses. The 12-gene model is more accurate than previously published lung cancer gene signatures on the same datasets. Furthermore, this signature accurately predicts chemoresistance/chemosensitivity to Cisplatin, Carboplatin, Paclitaxel, Etoposide, Erlotinib, and Gefitinib in NCI-60 cancer cell lines (P<0.017). The identified 12 genes exhibit curated interactions with major lung cancer signaling hallmarks in functional pathway analysis. The expression patterns of the signature genes have been confirmed in RT-PCR analyses of independent tumor samples. CONCLUSIONS/SIGNIFICANCE The results demonstrate the clinical utility of the identified gene signature in prognostic categorization. With this 12-gene risk score algorithm, early stage patients at high risk for tumor recurrence could be identified for adjuvant chemotherapy; whereas stage I and II patients at low risk could be spared the toxic side effects of chemotherapeutic drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An 8-gene signature for prediction of prognosis and chemoresponse in non-small cell lung cancer

Identification of a potential gene signature for improved diagnosis in non-small cell lung cancer (NSCLC) patient is necessary. Here, we aim to establish and validate the prognostic efficacy of a gene set that can predict prognosis and benefits of adjuvant chemotherapy (ACT) in NSCLC patients from various ethnicities. An 8-gene signature was calculated from the gene expression of 181 patients u...

متن کامل

Pathway-based identification of a smoking associated 6-gene signature predictive of lung cancer risk and survival

OBJECTIVE Smoking is a prominent risk factor for lung cancer. However, it is not an established prognostic factor for lung cancer in clinics. To date, no gene test is available for diagnostic screening of lung cancer risk or prognostication of clinical outcome in smokers. This study sought to identify a smoking associated gene signature in order to provide a more precise diagnosis and prognosis...

متن کامل

A population-based gene signature is predictive of breast cancer survival and chemoresponse.

It remains a critical issue to improve the survival rate in patients with recurrent or metastatic breast cancer. This study sought to develop a prognostic scheme based on a 28-gene signature in a broad patient population, including those with advanced disease. Clinically annotated transcriptional profiles of 1,734 breast cancer patients were obtained to validate the 28-gene signature in prognos...

متن کامل

Constructing molecular classifiers for the accurate prognosis of lung adenocarcinoma.

PURPOSE Individualized therapy of lung adenocarcinoma depends on the accurate classification of patients into subgroups of poor and good prognosis, which reflects a different probability of disease recurrence and survival following therapy. However, it is currently impossible to reliably identify specific high-risk patients. Here, we propose a computational model system which accurately predict...

متن کامل

Analysis of chemotherapeutic response in ovarian cancers using publicly available high-throughput data.

A third of patients with epithelial ovarian cancer (OVCA) will not respond to standard treatment. The determination of a robust signature that predicts chemoresponse could lead to the identification of molecular markers for response as well as possible clinical implementation in the future to identify patients at risk of failing therapy. This pilot study was designed to identify biologic proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010